本文章系列未来计划持续更新,把我在学习/实习/工作中遇到的相关实际案例记录在这里

系列综述:

服务器突然变得卡顿,怎么办?(1)综述

本文内容基于美团技术博客文章 《Java 中 9 种常见的 CMS GC 问题分析与解决》 算是转载性质的章节。尽管在美团博客中提到的是 CMS GC,但是对于其他 GC 实现也是很有参考意义的。

另外我也推荐一篇最近在看的关于 ZGC 的文章 《ZGC 介绍》 ,这篇文章很好的让我了解了 JDK 最新的 GC 实现方法和思想。

关于 Java 主要的三大 GC 实现的介绍,可以看以下的系列文章,我认为都是干货满满的:

真的是 GC 引发的问题吗?

首先需要确定的是,在一次 GC 问题处理的过程中,如何判断是 GC 导致的故障,还是系统本身引发 GC 问题?

在一个系统故障问题中,我们通常会得到下面四个表象指标:

  1. GC 耗时增大
  2. 线程 Block 增多
  3. 慢查询增多
  4. CPU 负载高

一般来说,可以通过以下四个维度思考这个问题:

  1. 时序分析:发生的事件是根因的概率更大,通过监控手段分析各个指标的异常时间点,还原事件时间线,如先观察到 CPU 负载高(要有足够的时间 Gap),那么整个问题影响链就可能是:CPU 负载高 -> 慢查询增多 -> GC 耗时增大 -> 线程 Block 增多 -> RT 上涨
  2. 概率分析:使用统计概率学,结合历史问题的经验进行推断,由近到远按类型分析,如过往慢查的问题比较多,那么整个问题影响链就可能是:慢查询增多 -> GC 耗时增大 -> CPU 负载高 -> 线程 Block 增多 -> RT上涨
  3. 实验分析:通过故障演练等方式对问题现场进行模拟,触发其中部分条件(一个或多个),观察是否会发生问题,如只触发线程 Block 就会发生问题,那么整个问题影响链就可能是:线程Block增多 -> CPU 负载高 -> 慢查询增多 -> GC 耗时增大 -> RT 上涨
  4. 反证分析:对其中某一表象进行反证分析,即判断表象的发不发生跟结果是否有相关性,例如我们从整个集群的角度观察到某些节点慢查和 CPU 都正常,但也出了问题,那么整个问题影响链就可能是:GC 耗时增大 -> 线程 Block 增多 -> RT 上涨

不同的根因,后续的分析方法是完全不同的。如果是 CPU 负载高那可能需要用火焰图看下热点、如果是慢查询增多那可能需要看下 DB 情况、如果是线程 Block 引起那可能需要看下锁竞争的情况。

这就是说,在很多场景下,很可能并不是 GC 导致的系统问题,如果不事先进行细致的问题定位,很可能会花费大量不必要的时间在错误的方向上。最后如果各个表象证明都没有问题,那可能 GC 确实存在瓶颈,可以继续往下分析。

GC 问题处理流程

GC 问题处理流程

制定标准

这块内容其实非常重要,但大部分系统中都是缺失的,缺少预见性。具体来说,需要结合应用系统的 TP9999 时间和延迟、吞吐量等设定具体的指标,而不是被问题驱动。一般情况下,评判 GC 的两个核心指标为:

  • 延迟(Latency): 也可以理解为最大停顿时间,即垃圾收集过程中一次 STW 的最长时间,越短越好,一定程度上可以接受频次的增大,GC 技术的主要发展方向。
  • 吞吐量(Throughput): 应用系统的生命周期内,由于 GC 线程会占用 Mutator 当前可用的 CPU 时钟周期,吞吐量即为 Mutator 有效花费的时间占系统总运行时间的百分比,例如系统运行了 100 min,GC 耗时 1 min,则系统吞吐量为 99%,吞吐量优先的收集器可以接受较长的停顿。

目前各大互联网公司的系统基本都更追求低延时,避免一次 GC 停顿的时间过长对用户体验造成损失,衡量指标主要由如下两点来判断:

主要衡量指标

简而言之,即为 一次停顿的时间不超过应用服务的 TP9999(满足千分之九百九十九的网络请求所需要的最低耗时),GC 的吞吐量不小于 99.99% 。举个例子,假设某个服务 A 的 TP9999 为 80 ms,平均 GC 停顿为 30 ms,那么该服务的最大停顿时间最好不要超过 80 ms,GC 频次控制在 5 min 以上一次。如果满足不了,那就需要调优或者通过更多资源来进行并联冗余。

除了这两个指标之外还有 Footprint(资源量大小测量)、反应速度等指标,互联网这种实时系统追求低延迟,而很多嵌入式系统则追求 Footprint。

保留现场

目前线上服务基本都是分布式服务,某个节点发生问题后,如果条件允许一定不要直接操作重启、回滚等动作恢复,优先通过摘掉流量的方式来恢复,这样我们可以将堆、栈、GC 日志等关键信息保留下来,不然错过了定位根因的时机,后续解决难度将大大增加。当然除了这些,应用日志、中间件日志、内核日志、各种 Metrics 指标等对问题分析也有很大帮助。

因果分析

判断 GC 异常与其他系统指标异常的因果关系,可以参考上文提到的 4 种分析方法,避免在排查过程中走入误区。

根因分析

确定是 GC 的问题后,可以借助相关的排查工具并通过 5 why 根因分析法以及下午各种常见的场景进行逐一匹配,或者直接参考下述根因鱼骨图,找出问题发生根因,最后再选择优化手段。

根因鱼骨图

调优建议

  • Trade Off:与 CAP 注定要缺一角一样,GC 优化要在延迟(Latency)、吞吐量(Throughput)、容量(Capacity)三者之间进行权衡。

  • 最终手段:GC 发生问题不是一定要对 JVM 的 GC 参数进行调优,大部分情况下是通过 GC 的情况找出一些业务问题,切记上来就对 GC 参数进行调整,当然有明确配置错误的场景除外。

  • 控制变量:控制变量法是在蒙特卡洛(Monte Carlo)方法中用于减少方差的一种技术方法,我们调优的时候尽量也要使用,每次调优过程尽可能只调整一个变量。

  • 善用搜索:理论上 99.99% 的 GC 问题基本都被遇到了,我们要学会使用搜索引擎的高级技巧,重点关注 StackOverFlow、Github 上的 Issue、以及各种论坛博客,先看看其他人是怎么解决的,会让解决问题事半功倍。

  • 调优重点:总体上来讲,我们开发的过程中遇到的问题类型也基本都符合正态分布,太简单或太复杂的基本遇到的概率很低。

  • GC 参数:如果堆、栈确实无法第一时间保留,一定要保留 GC 日志,这样我们最起码可以看到 GC Cause,有一个大概的排查方向。关于 GC 日志相关参数,最基本的 -XX:+HeapDumpOnOutOfMemoryError 等一些参数就不再提了,建议可以添加以下参数,可以提高我们分析问题的效率。

分类 参数 作用
基本参数 -XX:+PrintGCDetails

-XX:+PrintGCDatestamps

-XX:+PrintGCTimeStamps
GC 日志的基本参数
时间相关 -XX:+PrintGCApplicationConcurrentTime

-XX:+PrintGcApplicationStoppedTime
详细步骤的并行时间,STW 时间等等
年龄相关 -XX:+PrintTenuringDistribution 可以观察 GC 前后的对象年龄分布,方便发现过早晋升问题
空间变化 -XX:+PrintHeapAtGC 各个空间在 GC 前后的回收情况,非常详细
引用相关 -XX:+PrintReferenceGc 观察系统的软引用、弱引用、虚引用等回收情况
  • 其他建议

    • 主动式 GC:也有另开生面的做法,通过监控手段监控观测 Old 区的使用情况,即将到达阈值时将应用服务摘掉流量,手动触发一次 Major GC,减少 CMS GC 带来的停顿,但随之系统的健壮性也会减少,如非必要不建议引入。

    • 禁用偏向锁:偏向锁在只有一个线程使用到该锁的时候效率很高,但是在竞争激烈情况会升级成轻量级锁,此时就需要先消除偏向锁,这个过程是 STW 的。如果每个同步资源都走这个升级过程,开销会非常大,所以在已知并发激烈的前提下,一般会禁用偏向锁 -XX:-UseBiasedLocking 来提高性能。不过,偏向锁在 JDK 15 之后就是默认是关闭的,在现在最新的 LTS JDK 21 中已经彻底移除了偏向锁。

    • 虚拟内存:启动初期有些操作系统(例如 Linux)并没有真正分配物理内存给 JVM ,而是在虚拟内存中分配,使用的时候才会在物理内存中分配内存页,这样也会导致 GC 时间较长。这种情况可以添加 -XX:+AlwaysPreTouch 参数,让 VM 在 commit 内存时跑个循环来强制保证申请的内存真的 commit,避免运行时触发缺页异常。在一些大内存的场景下,有时候能将前几次的 GC 时间降一个数量级,但是添加这个参数后,启动的过程可能会变慢。

GC 常见问题罗列

本文罗列了常见的几种 GC 问题,排查难度从上到下依次递增。在美团博客原文中列出了部分 CMS 特有的问题,如 CMS Old GC 频繁单次 CMS Old GC 耗时长 等,这里不再赘述。

GC 常见问题 1:参数配置不当导致的动态扩容

现象

服务刚刚启动时 GC 次数较多,最大空间剩余很多但是依然发生 GC。我们可以通过观察 GC 日志或者通过监控工具来观察堆的空间变化情况。GC Cause 一般为 Allocation Failure,且在 GC 日志中会观察到经历一次 GC ,堆内各个空间的大小会被调整。

原因

在 JVM 的参数中 -Xms-Xmx 设置的不一致,在初始化时只会初始 -Xms 大小的空间存储信息,每当空间不够用时再向操作系统申请,这样的话必然要进行一次 GC。

另外,如果空间剩余很多时也会进行缩容操作,JVM 通过 -XX:MinHeapFreeRatio-XX:MaxHeapFreeRatio 来控制扩容和缩容的比例,调节这两个值也可以控制伸缩的时机。

整个伸缩的模型理解可以看这个图,当 committed 的空间大小超过了低水位/高水位的大小,capacity 也会随之调整:

GC 内存伸缩模型

定位

观察 GC 触发时间点 Old/MetaSpace 区的 committed 占比是不是一个固定的值,或者像上文提到的观察总的内存使用率也可以。

解决方案

尽量将成对出现的空间大小配置参数设置成固定的,如 -Xms-Xmx-XX:MaxNewSize-XX:NewSize-XX:MetaSpaceSize-XX:MaxMetaSpaceSize 等。

一般来说,我们需要保证 Java 虚拟机的堆是稳定的,确保 -Xms-Xmx 设置的是一个值(即初始值和最大值一致),获得一个稳定的堆,同理在 MetaSpace 区也有类似的问题。不过在不追求停顿时间的情况下震荡的空间也是有利的,可以动态地伸缩以节省空间,例如作为富客户端的 Java 应用。

GC 常见问题 2:显式 GC

现象

除了扩容缩容会触发 GC 之外,还有 Old 区达到回收阈值、MetaSpace 空间不足、Young 区晋升失败、大对象担保失败等几种触发条件,如果这些情况都没有发生却触发了 GC ?这种情况有可能是代码中手动调用了 System.gc 方法,此时可以找到 GC 日志中的 GC Cause 确认。

原因

System.gc 会引发一次 STW 的 Full GC。如果在应用程序中 System.gc 被频繁调用,显然是难以接受的。为此,有些资料提出添加 -XX:+DisableExplicitGC 参数来避免这种 GC。

但如果禁用掉的话就会带来另外一个内存泄漏问题,此时就需要说一下 DirectByteBuffer,它有着零拷贝等特点,被 Netty 等各种 NIO 框架使用,会使用到堆外内存。堆内存由 JVM 自己管理,堆外内存必须要手动释放,这依赖于System.gc的调用。如果打开了 -XX:+DisableExplicitGC,清理工作就可能得不到及时完成,于是就有发生 Direct Memory 的 OOM。

解决方案

无论是保留还是去掉都会有一定的风险点,不过目前互联网中的 RPC 通信会大量使用 NIO,所以总体来说建议保留这种 GC 方式

我们可以采用 JVM 提供的 -XX:+ExplicitGCInvokesConcurrent-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses 参数来将 System.gc 的触发类型从 Foreground(串行 GC) 改为 Background(并行 GC),这样的话就能大幅降低了 STW 开销,同时也不会发生 NIO Direct Memory OOM。

不止 CMS,在 G1 或 ZGC 中开启 ExplicitGCInvokesConcurrent 模式,都会采用高性能的并发收集方式进行收集,不过还是建议在代码规范方面也要做好约束,规范好 System.gc 的使用。

HotSpot 对 System.gc 有特别处理,最主要的地方体现在一次 System.gc 是否与普通 GC 一样会触发 GC 的统计/阈值数据的更新,HotSpot 里的许多 GC 算法都带有自适应的功能,会根据先前收集的效率来决定接下来的 GC 中使用的参数,但 System.gc 默认不更新这些统计数据,避免用户强行 GC 对这些自适应功能的干扰(可以参考 -XX:+UseAdaptiveSizePolicyWithSystemGC 参数,默认是 false)

GC 常见问题 3:MetaSpace 区 OOM

现象

JVM 在启动后或者某个时间点开始,MetaSpace 的已使用大小在持续增长,同时每次 GC 也无法释放,调大 MetaSpace 空间也无法彻底解决。

原因

MetaSpace 区都存放了什么数据?

Java7 之前字符串常量池被放到了 Perm 区(俗称永久代),所有被 intern 的 String 都会被存在这里,由于 String.intern 是不受控的,所以 -XX:MaxPermSize 的值也不太好设置,经常会出现 java.lang.OutOfMemoryError: PermGen space 异常,所以在 Java7 之后常量池等字面量(Literal)、类静态变量(Class Static)、符号引用(Symbols Reference)等几项被移到 Heap 中。而 Java8 之后 PermGen 也被移除,取而代之的是 MetaSpace。

在最底层,JVM 通过 mmap 接口向操作系统申请内存映射,每次申请 2MB 空间,这里是虚拟内存映射,不是真的就消耗了主存的 2MB,只有之后在使用的时候才会真的消耗内存。申请的这些内存放到一个链表中 VirtualSpaceList,作为其中的一个 Node。

在上层,MetaSpace 主要由 Klass Metaspace 和 NoKlass Metaspace 两大部分组成。

  • Klass MetaSpace:就是用来存 Klass 的,就是 Class 文件在 JVM 里的运行时数据结构,这部分默认放在 Compressed Class Pointer Space 中,是一块连续的内存区域,紧接着 Heap。Compressed Class Pointer Space 不是必须有的,如果设置了 -XX:-UseCompressedClassPointers,或者 -Xmx 设置大于 32 G,就不会有这块内存,这种情况下 Klass 都会存在 NoKlass Metaspace 里。
  • NoKlass MetaSpace:专门来存 Klass 相关的其他的内容,比如 Method,ConstantPool 等,可以由多块不连续的内存组成。虽然叫做 NoKlass Metaspace,但是也其实可以存 Klass 的内容,上面已经提到了对应场景。

MetaSpace 区的内存管理特点

  • MetaSpace 内存管理:类和其元数据的生命周期与其对应的类加载器相同,只要类的类加载器是存活的,在 Metaspace 中的类元数据也是存活的,不能被回收。每个加载器有单独的存储空间,通过 ClassLoaderMetaspace 来进行管理 SpaceManager* 的指针,相互隔离的。
  • MetaSpace 弹性伸缩:由于 MetaSpace 空间和 Heap 并不在一起,所以这块的空间可以不用设置或者单独设置,一般情况下避免 MetaSpace 耗尽 VM 内存都会设置一个 MaxMetaSpaceSize,在运行过程中,如果实际大小小于这个值,JVM 就会通过 -XX:MinMetaspaceFreeRatio-XX:MaxMetaspaceFreeRatio 两个参数动态控制整个 MetaSpace 的大小。

由问题 1 可知,为了避免弹性伸缩带来的额外 GC 消耗,我们会将 -XX:MetaSpaceSize-XX:MaxMetaSpaceSize 两个值设置为固定的,但是这样也会导致在空间不够的时候无法扩容,然后频繁地触发 GC,最终 OOM。所以关键原因就是 ClassLoader 不停地在内存中 load 了新的 Class ,一般这种问题都发生在动态类加载等情况上

解决方案

可以 dump 快照之后通过 JProfiler 或 MAT 观察 Classes 的 Histogram(直方图) 即可,或者直接通过命令即可定位, jcmd 打几次 Histogram 的图,看一下具体是哪个包下的 Class 增加较多就可以定位了。不过有时候也要结合 InstBytes、KlassBytes、Bytecodes、MethodAll 等几项指标综合来看下。

如果无法从整体的角度定位,可以添加 -XX:+TraceClassLoading-XX:+TraceClassUnLoading 参数观察详细的类加载和卸载信息。

一般来说问题基本都集中在反射、Javasisit 字节码增强、CGLIB 动态代理、OSGi 自定义类加载器等技术点上。在可观测性层面上,我们也应当及时给 MetaSpace 区的使用率加一个监控,如果指标有波动提前发现并解决问题。

GC 常见问题 4:过早晋升

现象

这种场景主要发生在分代的收集器上面(例如 JDK 21 之前的 ZGC 就是没有分代机制的),“过早晋升”专业的术语称为 Premature Promotion 。90% 的对象朝生夕死,只有在 Young 区经历过几次 GC 的洗礼后才会晋升到 Old 区,每经历一次 GC 对象的 GC Age 就会增长 1,最大通过 -XX:MaxTenuringThreshold 来控制。

过早晋升一般不会直接影响 GC,总会伴随着浮动垃圾、大对象担保失败等问题,但这些问题不是立刻发生的,我们可以观察以下几种现象来判断是否发生了过早晋升。

  • 分配速率接近于晋升速率,对象晋升年龄较小:GC 日志中出现 “Desired survivor size *** bytes, new threshold 1(max 6)”等信息,说明此时经历过一次 GC 就会放到 Old 区。
  • Full GC 比较频繁,且经历过一次 GC 之后 Old 区的变化比例非常大:比如说 Old 区触发的回收阈值是 80%,经历过一次 GC 之后下降到了 10%,这就说明 Old 区的 70% 的对象存活时间其实很短。

过早晋升的主要危害为:

  • Young GC 频繁,总的吞吐量下降。
  • Full GC 频繁,可能会有较大停顿。

原因

主要的原因有以下几点:

  • Young/Eden 区过小:过小的直接后果就是 Eden 被装满的时间变短,本应该回收的对象参与了 GC 并晋升,Young GC 采用的是复制算法,而 copying 耗时远大于 mark,也就是 Young GC 耗时本质上就是 copy 的时间(CMS 扫描 Card Table 或 G1 扫描 Remember Set 出问题的情况另说),没来及回收的对象增大了回收的代价,所以 Young GC 时间增加,同时又无法快速释放空间,Young GC 次数也跟着增加。

  • 对象分配速率过大:可以观察出问题前后 Mutator(应用执行的主要线程,和 GC 线程对应) 的对象分配速率,如果有明显波动可以尝试观察网卡流量、存储类中间件慢查询日志等信息,看是否有大量数据被加载到内存中。

  • 晋升年龄参数设置不合理:JVM 通过 -XX:MaxTenuringThreshold 参数来控制晋升年龄,每经过一次 GC,年龄就会加一,达到最大年龄就可以进入 Old 区,最大值为 15(因为 JVM 中使用 4 个比特来表示对象的年龄)。设定固定的 MaxTenuringThreshold 值作为晋升条件:

    • MaxTenuringThreshold 如果设置得过大,原本应该晋升的对象一直停留在 Survivor 区,直到 Survivor 区溢出,一旦溢出发生,Eden + Survivor 中对象将不再依据年龄全部提升到 Old 区,这样对象老化的机制就失效了。
    • MaxTenuringThreshold 如果设置得过小,过早晋升即对象不能在 Young 区充分被回收,大量短期对象被晋升到 Old 区,Old 区空间迅速增长,引起频繁的 Major GC,分代回收失去了意义,严重影响 GC 性能。

解决方案

  • 如果是 Young/Eden 区过小:我们可以在总的 Heap 内存不变的情况下适当增大 Young 区,具体怎么增加?一般情况下 Old 的大小应当为活跃对象的 2~3 倍左右,考虑到浮动垃圾问题最好在 3 倍左右,剩下的都可以分给 Young 区。
  • 如果是对象分配速率过大
    • 偶发较大:通过内存分析工具找到问题代码,从业务逻辑上做一些优化。
    • 一直较大:当前的 Collector 已经不满足 Mutator 的期望了,这种情况要么扩容 Mutator 的 VM,要么调整 GC 收集器类型或加大空间。
  • 如果是晋升年龄参数设置不合理:调整 -XX:+PrintTenuringDistribution 参数

过早晋升问题一般不会特别明显,但日积月累之后可能会爆发一波收集器退化之类的问题,所以我们还是要提前避免掉的,可以看看自己系统里面是否有这些现象,如果比较匹配的话,可以尝试优化一下。一行代码优化的 ROI 还是很高的。

当然,反过来思考,如果在观察 Old 区前后比例变化的过程中,发现可以回收的比例非常小,如从 80% 只回收到了 60%,说明我们大部分对象都是存活的,此时 Old 区的空间可以适当调大些。

GC 常见问题 5:内存碎片&收集器退化

现象

以 CMS 为例,并发的 CMS GC 算法,可能退化为 Foreground 单线程串行 GC 模式,STW 时间超长,有时会长达十几秒。其中 CMS 收集器退化后单线程串行 GC 算法有两种:

  • 带压缩动作的算法,称为 MSC,使用标记-清理-压缩,单线程全暂停的方式,对整个堆进行垃圾收集,也就是真正意义上的 Full GC,暂停时间要长于普通 CMS。
  • 不带压缩动作的算法,收集 Old 区,和普通的 CMS 算法比较相似,暂停时间相对 MSC 算法短一些。

原因

晋升失败(Promotion Failed)

晋升失败就是指在进行 Young GC 时,Survivor 放不下,对象只能放入 Old,但此时 Old 也放不下。直觉上乍一看这种情况可能会经常发生,但其实因为有 concurrentMarkSweepThread 和担保机制的存在,发生的条件是很苛刻的,除非是短时间将 Old 区的剩余空间迅速填满,例如上文中提到的过早晋升。

另外还有一种情况就是内存碎片导致的 Promotion Failed,Young GC 以为 Old 有足够的空间,结果到分配时,晋级的大对象找不到连续的空间存放。

内存碎片

内存碎片带来了两个问题:

  • 空间分配效率较低:如果是连续的空间 JVM 可以通过使用 pointer bumping 的方式来分配,而对于这种有大量碎片的空闲链表则需要逐个访问 freelist 中的项来访问,查找可以存放新建对象的地址。
  • 空间利用效率变低:Young 区晋升的对象大小大于了连续空间的大小,那么将会触发 Promotion Failed ,即使整个 Old 区的容量是足够的,但由于其不连续,也无法存放新对象,也就是本文所说的问题。

增量收集担保失败

分配内存失败后,会判断统计得到的 Young GC 晋升到 Old 的平均大小,以及当前 Young 区已使用的大小也就是最大可能晋升的对象大小,是否大于 Old 区的剩余空间。只要 CMS 的剩余空间比前两者的任意一者大,CMS 就认为晋升还是安全的,反之,则代表不安全,不进行 Young GC,直接触发 Full GC。

显式 GC

常见问题 2

并发模式失败(Concurrent Mode Failure)

最后一种情况,也是发生概率较高的一种,在 GC 日志中经常能看到 Concurrent Mode Failure 关键字。这种是由于并发 Background CMS GC 正在执行,同时又有 Young GC 晋升的对象要放入到了 Old 区中,而此时 Old 区空间不足造成的。

为什么 CMS GC 正在执行还会导致收集器退化呢?主要是由于 CMS 无法处理浮动垃圾(Floating Garbage)引起的。CMS 的并发清理阶段,Mutator 还在运行,因此不断有新的垃圾产生,而这些垃圾不在这次清理标记的范畴里,无法在本次 GC 被清除掉,这些就是浮动垃圾,除此之外在 Remark 之前那些断开引用脱离了读写屏障控制的对象也算浮动垃圾。所以 Old 区回收的阈值不能太高,否则预留的内存空间很可能不够,从而导致 Concurrent Mode Failure 发生。

解决方案

  • 内存碎片:通过配置 -XX:UseCMSCompactAtFullCollection=true 来控制 Full GC 的过程中是否进行空间的整理(默认开启,注意是 Full GC,不是普通 CMS GC),以及 -XX: CMSFullGCsBeforeCompaction=n 来控制多少次 Full GC 后进行一次压缩。

  • 增量收集:降低触发 CMS GC 的阈值,即参数 -XX:CMSInitiatingOccupancyFraction 的值,让 CMS GC 尽早执行,以保证有足够的连续空间,也减少 Old 区空间的使用大小,另外需要使用 -XX:+UseCMSInitiatingOccupancyOnly 来配合使用,不然 JVM 仅在第一次使用设定值,后续则自动调整。

  • 浮动垃圾:视情况控制每次晋升对象的大小,或者缩短每次 CMS GC 的时间,必要时可调节 NewRatio 的值。另外就是使用 -XX:+CMSScavengeBeforeRemark 在过程中提前触发一次 Young GC,防止后续晋升过多对象。

正常情况下触发并发模式的 CMS GC,停顿非常短,对业务影响很小,但 CMS GC 退化后,影响会非常大,建议发现一次后就彻底根治。只要能定位到内存碎片、浮动垃圾、增量收集相关等具体产生原因,还是比较好解决的。

关于内存碎片这块,如果 -XX:CMSFullGCsBeforeCompaction 的值不好选取的话,可以使用 -XX:PrintFLSStatistics 来观察内存碎片率情况,然后再设置具体的值。

最后就是在编码的时候也要避免需要连续地址空间的大对象的产生,如过长的字符串,用于存放附件、序列化或反序列化的 byte 数组等,还有就是过早晋升问题尽量在爆发问题前就避免掉。

GC 常见问题 6:堆外内存 OOM

现象

内存使用率不断上升,甚至开始使用 SWAP 内存,同时可能出现 GC 时间飙升,线程被 Block 等现象,通过 top 命令发现 Java 进程的 RES 甚至超过了 -Xmx 的大小。出现这些现象时,基本可以确定是出现了堆外内存泄漏。

原因

可以使用 NMT 确定是哪种原因导致的堆外内存泄漏。在项目中添加 -XX:NativeMemoryTracking=detail JVM 参数后重启项目(需要注意的是,打开 NMT 会带来 5%~10% 的性能损耗)。使用命令 jcmd pid VM.native_memory detail 查看内存分布。重点观察 total 中的 committed,因为 jcmd 命令显示的内存包含堆内内存、Code 区域、通过 Unsafe.allocateMemory 和 DirectByteBuffer 申请的内存,但是不包含其他 Native Code(C 代码)申请的堆外内存。

如果 total 中的 committed 和 top 中的 RES 相差不大,则应为主动申请的堆外内存未释放造成的,如果相差较大,则基本可以确定是 JNI 调用造成的。

主动申请堆外内存未释放

JVM 使用 -XX:MaxDirectMemorySize=size 参数来控制可申请的堆外内存的最大值。在 Java 8 中,如果未配置该参数,默认和 -Xmx 相等。

NIO 和 Netty 都会取 -XX:MaxDirectMemorySize 配置的值,来限制申请的堆外内存的大小。NIO 和 Netty 中还有一个计数器字段,用来计算当前已申请的堆外内存大小,NIO 中是 java.nio.Bits#totalCapacity、Netty 中是 io.netty.util.internal.PlatformDependent#DIRECT_MEMORY_COUNTER

当申请堆外内存时,NIO 和 Netty 会比较计数器字段和最大值的大小,如果计数器的值超过了最大值的限制,会抛出 OOM 的异常。

  • NIO 中是:OutOfMemoryError: Direct buffer memory
  • Netty 中是:OutOfDirectMemoryError: failed to allocate capacity byte(s) of direct memory (used: usedMemory , max: DIRECT_MEMORY_LIMIT)

我们可以检查代码中是如何使用堆外内存的,NIO 或者是 Netty,通过反射,获取到对应组件中的计数器字段,并在项目中对该字段的数值进行打点,即可准确地监控到这部分堆外内存的使用情况。

此时,可以通过 Debug 的方式确定使用堆外内存的地方是否正确执行了释放内存的代码。另外,需要检查 JVM 的参数是否有 -XX:+DisableExplicitGC 选项,如果有就去掉,因为该参数会使 System.gc 失效。(见GC 常见问题 2

通过 JNI 调用的 Native Code 申请的内存未释放

这种情况排查起来比较困难,我们可以通过 Google perftools + Btrace 等工具,帮助我们分析出问题的代码在哪里。

除了项目本身的原因,还可能有外部依赖导致的泄漏,如 Netty 和 Spring Boot。

解决方案

首先可以使用 NMT + jcmd 分析泄漏的堆外内存是哪里申请,确定原因后,使用不同的手段,进行原因定位。

堆外内存泄漏解决方案

GC 常见问题 7:JNI 引发的 GC 问题

现象

在 GC 日志中,出现 GC Cause 为 GCLocker Initiated GC

原因

JNI(Java Native Interface)意为 Java 本地调用,它允许 Java 代码和其他语言写的 Native 代码进行交互。JNI 如果需要获取 JVM 中的 String 或者数组,有两种方式:

  • 拷贝传递。
  • 共享引用(指针),性能更高。

由于 Native 代码直接使用了 JVM 堆区的指针,如果这时发生 GC,就会导致数据错误。因此,在发生此类 JNI 调用时,禁止 GC 的发生,同时阻止其他线程进入 JNI 临界区,直到最后一个线程退出临界区时触发一次 GC。

GC Locker 可能导致的不良后果有:

  1. 如果此时是 Young 区不够 Allocation Failure 导致的 GC,由于无法进行 Young GC,会将对象直接分配至 Old 区。
  2. 如果 Old 区也没有空间了,则会等待锁释放,导致线程阻塞。
  3. 可能触发额外不必要的 Young GC,JDK 有一个 Bug,有一定的几率,本来只该触发一次 GCLocker Initiated GC 的 Young GC,实际发生了一次 Allocation Failure GC 又紧接着一次 GCLocker Initiated GC。是因为 GCLocker Initiated GC 的属性被设为 full,导致两次 GC 不能收敛。

解决方案

  • 添加 -XX+PrintJNIGCStalls 参数,可以打印出发生 JNI 调用时的线程,进一步分析,找到引发问题的 JNI 调用。

  • JNI 调用需要谨慎,不一定可以提升性能,反而可能造成 GC 问题。

  • 升级 JDK 版本到 14 及以上,避免 JDK-8048556 导致的重复 GC。

JNI 产生的 GC 问题较难排查,需要谨慎使用。